19 February 2026
Chicago 12, Melborne City, USA
Curiosity

The natural architecture of oyster reefs maximizes recruit survival

  • Huston, M. A general hypothesis of species diversity. Am. Nat. 113, 81–101 (1979).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kovalenko, K. E., Thomaz, S. M. & Warfe, D. M. Habitat complexity: approaches and future directions. Hydrobiologia 685, 1–17 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Jones, C. G., Lawton, J. H. & Shachak, M. in Ecosystem Management: Selected Readings 130–147 (Springer, 1994).

  • Hastings, A. et al. Ecosystem engineering in space and time. Ecol. Lett. 10, 153–164 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Boogert, N. J., Paterson, D. M. & Laland, K. N. The implications of niche construction and ecosystem engineering for conservation biology. Bioscience 56, 570–578 (2006).

    Article 

    Google Scholar
     

  • LaRue, E. A. et al. A theoretical framework for the ecological role of three-dimensional structural diversity. Front. Ecol. Environ. 21, 4–13 (2023).

    Article 

    Google Scholar
     

  • Torres-Pulliza, D. et al. A geometric basis for surface habitat complexity and biodiversity. Nat. Ecol. Evol. 4, 1495–1501 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).

    Article 

    Google Scholar
     

  • Macarthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).

  • Bishop, M. J., Vozzo, M. L., Mayer-Pinto, M. & Dafforn, K. A. Complexity–biodiversity relationships on marine urban structures: reintroducing habitat heterogeneity through eco-engineering. Philos. Trans. R. Soc. B 377, 20210393 (2022).

    Article 

    Google Scholar
     

  • McAfee, D., Bishop, M. J., Yu, T. & Williams, G. A. Structural traits dictate abiotic stress amelioration by intertidal oysters. Funct. Ecol. 32, 2666–2677 (2018).

    Article 

    Google Scholar
     

  • Strain, E. M. A. et al. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol. Eng. 120, 637–644 (2018).

    Article 

    Google Scholar
     

  • Temmink, R. J. M. et al. Mimicry of emergent traits amplifies coastal restoration success. Nat. Commun. 11, 3668 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gurney, W. S. C. & Lawton, J. H. The population dynamics of ecosystem engineers. Oikos 76, 273–283 (1996).

    Article 

    Google Scholar
     

  • Wright, J. P., Gurney, W. S. C. & Jones, C. G. Patch dynamics in a landscape modified by ecosystem engineers. Oikos 105, 336–348 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Shurin, J. B. & Allen, E. G. Effects of competition, predation, and dispersal on species richness at local and regional scales. Am. Nat. 158, 624–637 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meira, A., Byers, J. E. & Sousa, R. A global synthesis of predation on bivalves. Biol. Rev. 99, 1015–1057 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Esquivel-Muelbert, J. R. et al. Spatial variation in the biotic and abiotic filters of oyster recruitment: implications for restoration. J. Appl. Ecol. 59, 953–964 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Heck, Jr, K. L. & Wetstone, G. S. Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J. Biogeogr. 4, 135–142 (1977).

  • Pearson, R. G. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).

  • Nakamura, T. & Nakamori, T. A geochemical model for coral reef formation. Coral Reefs 26, 741–755 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez, A. B. et al. Oyster reefs can outpace sea-level rise. Nat. Clim. Chang. 4, 493–497 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Grabowski, J. H. & Powers, S. P. Habitat complexity mitigates trophic transfer on oyster reefs. Mar. Ecol. Prog. Ser. 277, 291–295 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article 
    ADS 

    Google Scholar
     

  • D’Urban Jackson, T., Williams, G. J., Walker-Springett, G. & Davies, A. J. Three-dimensional digital mapping of ecosystems: a new era in spatial ecology. Proc. R. Soc. B 287, 20192383 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cannon, D. J., Kibler, K. M., Taye, J. & Medeiros, S. C. Characterizing canopy complexity of natural and restored intertidal oyster reefs (Crassostrea virginica) with a novel laser-scanning method. Restor. Ecol. 31, e13973 (2023).

    Article 

    Google Scholar
     

  • Warfe, D. M., Barmuta, L. A. & Wotherspoon, S. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117, 1764–1773 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Nash, K. L., Graham, N. A. J., Wilson, S. K. & Bellwood, D. R. Cross-scale habitat structure drives fish body size distributions on coral reefs. Ecosystems 16, 478–490 (2013).

    Article 

    Google Scholar
     

  • Reichert, J., Backes, A. R., Schubert, P. & Wilke, T. The power of 3D fractal dimensions for comparative shape and structural complexity analyses of irregularly shaped organisms. Methods Ecol. Evol. 8, 1650–1658 (2017).

    Article 

    Google Scholar
     

  • Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Esquivel-Muelbert, J., Lanham, B. S., Didderen, K., Van Der Heide, T. & Bishop, M. J. Patterns of oyster recruitment and habitat provision across tidal elevation gradients are dependent on predator mitigation methods. J. Appl. Ecol. 62, 726–738 (2025).

    Article 

    Google Scholar
     

  • Temmink, R. J. M. et al. Life cycle informed restoration: engineering settlement substrate material characteristics and structural complexity for reef formation. J. Appl. Ecol. 58, 2158–2170 (2021).

    Article 

    Google Scholar
     

  • Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl Acad. Sci. USA 96, 10242–10247 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, M. W. et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61, 107–116 (2011).

    Article 

    Google Scholar
     

  • Gillies, C. L. et al. Conservation status of the oyster reef ecosystem of southern and eastern Australia. Glob. Ecol. Conserv. 22, e00988 (2020).


    Google Scholar
     

  • Grabowski, J. H. et al. Economic valuation of ecosystem services provided by oyster reefs. Bioscience 62, 900–909 (2012).

    Article 

    Google Scholar
     

  • Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hemraj, D. A. et al. Oyster reef restoration fails to recoup global historic ecosystem losses despite substantial biodiversity gain. Sci. Adv. 8, eabp8747 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brumbaugh, R. D. & Coen, L. D. Contemporary approaches for small-scale oyster reef restoration to address substrate versus recruitment limitation: a review and comments relevant for the Olympia oyster, Ostrea lurida Carpenter 1864. J. Shellfish Res. 28, 147–161 (2009).

    Article 

    Google Scholar
     

  • Fitzsimons, J. A. et al. Restoring shellfish reefs: global guidelines for practitioners and scientists. Conserv. Sci. Pract. 2, e198 (2020).

    Article 

    Google Scholar
     

  • Lipcius, R. N., Zhang, Y., Zhou, J., Shaw, L. B. & Shi, J. Modeling oyster reef restoration: larval supply and reef geometry jointly determine population resilience and performance. Front. Mar. Sci. 8, 677640 (2021).

    Article 

    Google Scholar
     

  • Schulte, D. M., Burke, R. P. & Lipcius, R. N. Unprecedented restoration of a native oyster metapopulation. Science 325, 1124–1128 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fodrie, F. J. et al. Classic paradigms in a novel environment: inserting food web and productivity lessons from rocky shores and saltmarshes into biogenic reef restoration. J. Appl. Ecol. 51, 1314–1325 (2014).

    Article 

    Google Scholar
     

  • Temmink, R. J. M., Angelini, C., Verkuijl, M. & van der Heide, T. Restoration ecology meets design-engineering: mimicking emergent traits to restore feedback-driven ecosystems. Sci. Total Environ. 902, 166460 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crain, C. M. & Bertness, M. D. Ecosystem engineering across environmental gradients: implications for conservation and management. Bioscience 56, 211–218 (2006).

    Article 

    Google Scholar
     

  • Powers, S. P., Peterson, C. H., Grabowski, J. H. & Lenihan, H. S. Success of constructed oyster reefs in no-harvest sanctuaries: implications for restoration. Mar. Ecol. Prog. Ser. 389, 159–170 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Tracy, A. M. et al. Oyster reef habitat depends on environmental conditions and management across large spatial scales. Mar. Ecol. Prog. Ser. 721, 103–117 (2023).

    Article 

    Google Scholar
     

  • Figueira, W. et al. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens. 7, 16883–16900 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Esquivel-Muelbert, J. R., Alleway, H. K. & Bishop, M. J. Shellfish reef aquaculture: a perspective on the systematic cultivation of endangered biogenic habitats. Restor. Ecol. 32, e14166 (2024).

    Article 

    Google Scholar
     

  • Howie, A. H., Reeves, S. E., Gillies, C. L. & Bishop, M. J. Integration of social data into restoration suitability modelling for oyster reefs. Ecol. Indic. 158, 111531 (2024).

    Article 

    Google Scholar
     

  • Schiettekatte, N. M. D. et al. Habtools: an R package to calculate 3D metrics for surfaces and objects. Methods Ecol. Evol. 16, 895–903 (2025).

  • Dubuc, B., Zucker, S. W., Tricot, C., Quiniou, J. F. & Wehbi, D. Evaluating the fractal dimension of surfaces. Proc. R. Soc. London. A 425, 113–127 (1989).

  • Anderson, M. J. A chemical cue induces settlement of Sydney rock oysters, Saccostrea commercialis, in the laboratory and in the field. Biol. Bull. 190, 350–358 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinez-Baena, F. et al. Trophic structure of temperate Australian oyster reefs within the estuarine seascape: a stable isotope analysis. Estuaries Coasts 46, 844–859 (2023).

    Article 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Stastical Computing, 2023); https://www.R-project.org/.

  • First Appeared on
    Source link

    Leave feedback about this

    • Quality
    • Price
    • Service

    PROS

    +
    Add Field

    CONS

    +
    Add Field
    Choose Image
    Choose Video